Senin, 17 November 2008

Medical parasitology

One of the largest fields in parasitology, medical parasitology is the study of those parasites which infect humans. These include organisms such as:

Medical parasitology can involve drug development, epidemiological studies and study of zoonoses.

Veterinary parasitology

The study of parasites which cause economic losses in agriculture or aquaculture operations, or which infect companion animals. Examples of species studied are:

  • Lucilia sericata, a blowfly, which lays eggs on the skins of farm animals. The maggots hatch and burrow into the flesh, distressing the animal and causing economic loss to the farmer
  • Otodectes cynotis, the cat ear mite, responsible for Canker.
  • Gyrodactylus salaris, a monogenean parasite of salmon, which can wipe out populations which are not resistant.


Quantitative parasitology

Parasites exhibit an aggregated distribution among host individuals, thus the majority of parasites live in the minority of hosts. This feature forces parasitologists to use advanced biostatistical methodologies.

Structural parasitology

This is the study of structures of proteins from parasites. Determination of parasitic protein structures may help to better understand how these proteins function differently from homologous proteins in humans. In addition, protein structures may inform the process of drug discovery.

Parasite ecology

Parasites can provide information about host population ecology. In fisheries biology, for example, parasite communities can be used to distinguish distinct populations of the same fish species co-inhabiting a region. Additionally, parasites possess a variety of specialized traits and life-history strategies that enable them to colonize hosts. Understanding these aspects of parasite ecology, of interest in their own right, can illuminate parasite-avoidance strategies employed by hosts.

Taxonomy and phylogenetics

The huge diversity between parasitic organisms creates a challenge for biologists who wish to describe and catalogue them. Recent developments in using DNA to identify separate species and to investigate the relationship between groups at various taxonomic scales has been enormously useful to parasitologists, as many parasites are highly degenerate, disguising relationships between species.

Tidak ada komentar: